Translate

Sunday, 18 January 2015

spoj ABA12D solution

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
this method is not good..........but u learn a lot form this logic.....


if u have any doubt u can comment me........in this logic

MY AC solutiin is

#include<bits/stdc++.h>
using namespace std;
typedef long long int ll;
ll ans[1000002];
inline ll sumofdiv(ll a)
{
 ll sum=0,step=1;
 if(a&1)
 step=2;
 for(ll i=1;i*i<=a;i+=step)
 sum+=(a%i)?0:(((i*i)==a)?i:(i+a/i));
 return sum;
}
inline ll mulmod(ll a,ll b,ll mod)
{
 ll x=0,y=a%mod;
 while(b)
 {
  if(b&1)
  x=(x+y)%mod;
  y=(y<<=1)%mod;
  b>>=1;
 }
 return x;
}
inline ll pow(ll a,ll b,ll mod)
{
 ll ans=1;
 a%=mod;
 while(b)
 {
  if(b&1)
  ans=mulmod(ans,a,mod);
  a=mulmod(a,a,mod);
  b>>=1;
 }
 return ans;
}
inline bool rabinMiller(ll n,int it)
{
 if(n<2)   return false;
 if(n==2)   return true;
 if((n&1)==0)   return false;
 
 ll s=n-1;
 while(s%2==0)
 s>>=1;
 
 while(it--)
 {
  ll a=rand()%(n-1)+1;
  ll temp=s;
  ll mod=pow(a,temp,n);
  
  if(mod==-1 || mod==1)
  continue;
  
  while(mod!=(n-1) && temp!=(n-1))
  {
   mod=mulmod(mod,mod,n);
   temp<<=1;
  }
  
  if(mod!=(n-1))
  return false;
 }
 return true;
}
int main()
{
 ll t,a,b;

 ans[0]=0;
 ans[1]=0;
 ans[2]=1;
 for(ll i=3;i<1000001;i++)
 {
  if(sqrt(i)==(ll)sqrt(i))
  {
   if(rabinMiller(sumofdiv(i),2))
   {
   ans[i]=ans[i-1]+1;
   //printf("i=%lld\n",i);
       }
   else
   ans[i]=ans[i-1];
  }
  else
  ans[i]=ans[i-1];
 }
 scanf("%lld",&t);
 while(t--)
 {
  scanf("%lld %lld",&a,&b);
  printf("%lld\n",ans[b]-ans[a-1]);
 }
 return 0;
}

No comments:

Working With Java Collections